The generator matrix 1 0 1 1 1 3X+2 1 1 2 1 1 3X 1 1 2X 1 1 X+2 1 1 2X+2 1 1 X 1 1 0 1 1 3X+2 1 1 2 1 1 3X 1 1 2X 1 1 X+2 1 1 2X+2 1 1 X 1 1 1 1 0 3X+2 X X 2X X X 2X+2 1 1 X X 0 2 X X 2 1 1 3X 1 1 2X 1 1 2X+2 1 1 1 1 X+2 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 X+1 3X+2 2X+3 1 2 X+3 1 3X 2X+1 1 2X 3X+1 1 X+2 3 1 2X+2 3X+3 1 X 1 1 0 X+1 1 3X+2 2X+3 1 2 X+3 1 3X 2X+1 1 2X 3X+1 1 X+2 3 1 2X+2 3X+3 1 X 1 1 0 X+1 3X+2 2X+3 1 1 2X X+2 X 2X+2 X X 2 X+3 0 3X+2 X 1 2 3X X 3X 2X+1 1 2X 3X+1 1 2X+2 3X+3 1 X+2 X 3 1 1 1 0 2 2X 2X+2 3X+2 3X X+2 X X+1 X+3 3X+1 3X+3 2X+3 2X+1 0 generates a code of length 99 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 98. Homogenous weight enumerator: w(x)=1x^0+28x^98+184x^99+28x^100+2x^101+2x^102+4x^103+2x^104+2x^105+1x^108+1x^114+1x^126 The gray image is a code over GF(2) with n=792, k=8 and d=392. This code was found by Heurico 1.16 in 0.453 seconds.